Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method
نویسندگان
چکیده
A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturally without any a priori subjective criterion selection as in the intermittence test for the original EMD algorithm. This new approach utilizes the full advantage of the statistical characteristics of white noise to perturb the signal in its true solution neighborhood, and to cancel itself out after serving its purpose; therefore, it represents a substantial improvement over the original EMD and is a truly noise-assisted data analysis (NADA) method.
منابع مشابه
A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملEnsemble Empirical Mode Decomposition: An adaptive method for noise reduction
Empirical mode decomposition (EMD), a data analysis technique, is used to denoise non-stationary and non-linear processes. The method does not require any pre & post processing of signal and use of any specified basis functions. But EMD suffers from a problem called mode mixing. So to overcome this problem a new method known as Ensemble Empirical mode decomposition (EEMD) has been introduced. T...
متن کاملComplementary Ensemble Empirical Mode Decomposition: a Novel Noise Enhanced Data Analysis Method
The phenomenon of mode-mixing caused by intermittence signals is an annoying problem in Empirical Mode Decomposition (EMD) method. The noise assisted method of Ensemble EMD (EEMD) has not only effectively resolved this problem but also generated a new one, which tolerates the residue noise in the signal reconstruction. Of course, the relative magnitude of the residue noise could be reduced with...
متن کاملEnsemble Empirical Mode Decomposition with Supervised Cluster Analysis
Ensemble empirical mode decomposition (EEMD) is a noise-assisted data analysis method which decomposes a signal into a collection of intrinsic mode functions (IMFs). There nevertheless appears a multi-mode problem where signals with a similar timescale are decomposed into different IMF components. A possible solution to this problem is to recombine the multi-mode IMF components into a proper si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in Adaptive Data Analysis
دوره 1 شماره
صفحات -
تاریخ انتشار 2009